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THERMAL REGIME OF MOIST CONCRETE WALLS SUBMERGED INTO THE GROUND 

OF STRUCTURES UNDER CONDITIONS OF CONVECTIVE DRYING 

V. M. Gritsev and S. I. Bykov UDC 536.21 

The article provides the solution of the heat conduttion for a semibounded massif 
with the boundary condition of the third kind taking into account the effect of 
evaporation on the heat-exchange surface, 

Drying is a complex process of non-steady-state heat and moisture exchange which~ ac- 
cording to the analytical theory [I, 2], is described by the system of differential equations 

Ot r Ou 
- a v ~ + ~ - -  - - ,  

O~ c O~ 

(1) 
Ou 
- - - = a ~ v 2 u + a ~ 6 v ~ .  
Oz 
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At present we lack strict correlations for ~ and ~ in the case of many materials. This 
limits the application of the solutions of system (i). In engineering practice, the sepa- 
rate methodof heat-engineering calculation of moist bodies is therefore often used, Its es- 
sence [i, 3] consists in determining the functional dependence for the flow density of tho 
moisture, and subsequently solving the equation of heat conductivity with boundary condi- 
tions taking the discharge of heat for evaporation into account. 

For determining the flow density of the moisture, we analyze the equation of moisture 
conductivity for the case of mass transfer in a wall submerged into the ground of a struc- 
ture. In drying, the moisture flow in the wall has to be directed toward the premises, The 
heat flow must not change this direction. The thermogradient coefficlentis very small, and 
therefore the equation of moisture conductivity can be represented in the first approxima- 
tion in the form 

au (x, ~ a~u ix, x) 
- - a m  (T>O,  O < x ~ .  (2) 

O~ O x 2 

We determine the moisture content of the surface layer of the wall (Fig. in), For that, 
we must solve Eq. (2) with the boundary conditions 

au(O, ~) = o, (3)  
Ox 

au (b, T) 
ax 

=-- ~- Iu(t,, ~ ) - - u e l ,  -(4) 
am 

u (x, 0) = uo. (5 )  

For further analysis weuse the solution of the heat-conduction equation with similar 
boundary conditions as given in [3]. We note that for the process of organized convective 
drying of concrete wails, Fo m < 0.i is characteristic. In that case we may write 

Uo - -  u (b, "r _ 1 - -  exp (Bi2mFOm) erfc(Bim VFom). (6) 
u o ~ u e 

If we represent the density of the moisture flow on the wall surface in the form 

] = ~0 Iu (b, ~) - -  uel 

and solve (6) and (7) jointly, we obtain 

] = ~p (u0 - -  u~  exp (Bi~ Fore) e r~  (Bim ]/F-o~) 
o r  

(7) 

(8) 

] = m0exp(Bi~F~ (9) 

For  c o m p i l i n g  t h e  t h e o r e t i c a l  d i ag ram o f  t h e  p rob l e m of  h e a t i n g  m o i s t  w a l l s  submerged 
into the ground of structures, we examine the most characteristic case of their design when 
the load-bearing part (the concrete lining) has no heat insulation. In view of the fact 
that the heat-engineering characteristics (thermal conductivity, specific heat, and thermal 
diffusivity) of concretes and grounds of medium moisture content are equivalent, we will 
consider the concrete and the ground massif around the structure as a homogeneous and iso- 
tropic body. 

In that case, the problem is written in the following way, Given is a semibounded body 
(Fig. ib) with the initial temperature to. The bounding surface is washed by air with tem- 
perature ta" The heat exchange characterized by the coefficient ~ occurs according to New~ 
ton's law. The moisture exchange on the surface is characterized by variable density j. We 
have to find the temperature distribution in the body at an arbitrary instant of time, 

Finding the temperature field in the wall is bound up with the solution of the differ- 
ential heat-conduction equation 

at(x,x) = a  a~(x,~) @ > %  O < x < o ~ )  (10 )  
ax ax 2 
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Fig. i. Theoretical diagram for the problem of drying (a) and 
heating (b) of a moist wall submerged into the ground of a struc- 
ture: i) concrete wall; 2) waterproofing insulation; 3) ground 
massif. 

with the boundary conditions 

t (x ,  o) = to, ( n )  

X Ot (0, , )  + = [G _ t (0, ,)1 - -  lr = 0 ,  
Ox 

(12) 

at (oo ,  ~) = O. ( 1 3 )  
Ox 

Taking Eq. (9) into account, we write Eq. (12) as follows: 

X Ot (0, z) + ~ it a __ t (0, "01 - -  rnor exp (kzr) erfc (k V-~). 
Ox 

(14) 

If we apply the Laplace transform to Eq. (10), we obtain its solution in the images with 
the initial condition (ii) in the form 

t L (x. p) = t_o + AeVP/-~ + Be-  vTF~. (15) 
P 

The boundary conditions (13) and (14) in the images have the form 

~ i  (0, p) + = &----- ~ q  (0, p) - -  mot _ _  = o, (16)  
p V ~  ( V ~  + ~) 

q ( ~ ,  p) = o. (17)  

It follows from condition (17) that A = 0, From the requirement that the solution of 
(15) satisfy the boundary condition (16), we determine thecoefficient B: 

B =  ~ (& - t~ mot 

p (a + % V p/a) (~ + ~, V-PT-a) V-fi (Vp  -5 k) 

Thus, the solution of Eq. (i0) in images is written in the form 

(is) 

t L (x,  p) = t--t~ o~ (t a - -  to) 
p -5 p (~ -{- Z ]/'p?a) 

e-  VpV~x _ mot e- V~x. (19) 

In accordance with the table of images [3], the preimage of the second term in the 
right-hand part of (19) has the form 

L-~ f ~ ( ta--  to) ] [ x exp (Hx + H2a~) erfc ( x )]  p(o~+%]/'p/a) e-V~/--ux =( /a - - t~  erfc 2]/'a-~ 2 V ' ~  + H ] / ~ -  . (20) 

To find the preimage of the third term in the right-hand part of (19), we transform the 
latter under the condition that (~/%)r # k. 
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An analysis of numerous regimes of convective drying of massive concrete walls shows 
that they are characterized by k =(0.001-0.003)i/~c and (~/A)/a= (0.005-0.02) i/~c. 

mor 

Thus 

(~ + ~ r  V~(V-~ + ~) 

1 ( ~'tr'd + ] / ~ - - ] / ' p - - k )  

e-  v 77"~ = mor . ~" �9 e- r = 

mor [ 
(= V'-d~ k) 

(v-f+ k) ] e~ l/~ax .~_ mot" 

( ~ V-~ k) 

X 
v~(V-~+k) V'z~ + v?)V-~ 

]/-~-/ aX = 

mor e- pV'Yf'~x mor e- v-FF=x . 

) V-~ (v-~-+ k) - k~ 

Using the table of images [3], we obtain 

i _ 
L_ t mor 

(~ k~ ~ - +  2V-~ ' . 1/-~) 

"-'[( /mi 1 k;k __ e- r = 
~' V7  V-Y VT+ 

= mor [exp(nx+ n~a,)erfc ( ~ + H V ~ ) ]  ( o~ kX 

(21) 

(22) 

Since the Laplace transform has the property of being linear, the common original of Eq. 
(19) has the form 

t (x, x) : to+ (t a -- to)[eric., x ( x H V " ~  ) ] ( o~ --m~ ) ._9 [/-~aT - -  exp (Hx + H'a'O X eric 2 l / ~  ,t----f-_- 

• k ~ + k~ eric k V-~-k- 1/"~. -- (Hx + H2a~) eric ~ ~7~"~. + H V"~a~ Q 

X 

(23) 

The solution of the initial problem is written in criterial form as follows: 

Ox == eric 2 ]/'F-0~x exp (Bix + Bi~Fo x) eric 2 ~  + Bix F~P'~ -- 
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[ 1 B i m ~  "~ F % ) e r f c  1 

C + . 
The o b t a i n e d  s o l u t i o n  o f  (24) d i f f e r s  f rom t h e  s o l u t i o n s  p r o v i d e d  by t h e  l i t e r a t u r e  on 

h e a t  c o n d u c t i v i t y  [3] by  t h e  e x i s t e n c e  o f  a s eco n d  t e rm  i n  t h e  r i g h t - h a ~ : l  p a r t ,  T h i s  t e rm 
c h a r a c t e r i z e s  t h e  i n f l u e n c e  o f  t h e  m o i s t u r e  ex ch an g e  on t h e  p r o c e s s  o f  d e v e l o p m e n t  and 
f o r m a t i o n  o f  a t e m p e r a t u r e  f i e l d  i n  t h e  w a l l  and i n  t h e  a d j a c e n t  ground m a s s i f ,  

The f u n c t i o n s  exp Z and e r f c  L a r e  t a b u l a t e d ,  and i n  t h e  s o l u t i o n  o f  a c t u a l  p rob lems  
of heating of walls, they can be determined with the aid of mathematical handbooks~ e.g., 
[4]. 

NOTATION 

t, temperature of the body; u, specific moisture content of the concrete; T, time; a, 
thermal diffusivity of concrete; am, moisture diffusion coefficient of concrete; l, heat 
conductivity; ~, criterion of internal evaporation determining the amount of vapor diffused 
in the wall upon its being heated; r, latent heat of evaporation; c, specific heat capacity 
of concrete; ~, thermogradient coefficient characterizing moisture transfer due to the tem- 
perature gradient;to, mean initial temperature of the wall; t a, temperature of the air sup- 
plied to the structure for drying the wall; ~, heat-transfer coefficient; B, moisture-trans- 
fer coefficient based on the difference of thespecific moisture contents; p, density of dry 
concrete; j, density of the heat flow from the evaporation surface; b, thickness of the con- 
crete wall; Ue, equilibrium moisture content of concrete; uo, initial specific moisture con- = 
tent of the concrete in the wall; H~e/%; k = ~/~; Bim= ~b/am; Fore = am~/b2; Bix=--~ x; Fox =az/x~; ex= 

t a -  to ; Om = m0 e - -  (t a -  to). 
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